

Postoperative morbidity and mortality with multi-layer, multi-parameter fMRI/DTI presurgical brain mapping: a retrospective, single-institution experience.

Juan Carlos Vera BS; Joe Cochran MD; Christopher Patrick Carroll MD, MA; Andrew Lozen MD; John L. Ulmer MD; Wade M

Mueller MD

Medical College of Wisconsin, Departments of Neurosurgery and Neuroradiology

Learning Objectives

 (1) Describe data on incidence of morbidity and mortality in patients undergoing resection of supratentorial tumors with the use of presurgical brain mapping in a modern series
 (2) Discuss and critically evaluate results of this single institution in the context of previous series

Introduction

Diffusion tensor (DTI) and functional magnetic resonance (fMRI) imaging are used to guide the resection of intracranial neoplasms. Reported neurologic morbidity of any severity ranges 20-41%, with major morbidity and perioperative mortality as low as 12% and 1.7%, respectively (2,4,6). In this study, we conduct a noncomparative analysis of post-operative outcomes with DTI and fMRI presurgical brain mapping.

Methods

Reviewed medical records of all patients undergoing gross tumor resection by a single neurosurgeon, with fMRI and DTI for pre-surgical planning, over 54 months at a single academic tertiary referral center.

Patient medical records included:

- Elective resection of supratentorial neoplasm with complete neurologic evaluation
- Demographic patient data, including age at time of operation and gender
- Pre-operative fMRI and DTI Radiologic report and Surgical Pathology report describing pathological characteristics of tumor and diagnosis

 Recorded response to preoperative deficits at immediate, 1
 -wk, 1-mo, and 6-mo postoperatively.

COMPLICATION	MINOR	MAJOR			
Neurological					
Motor or sensory deficit	Resolved within 30 days	Neurological deterioration persisted more than 30 days or required surgery			
Aphasia/dysphasia	Resolved within 30 days	Persisted more than 30 days			
Visual field deficit	Resolved within 30 days	Persisted more than 30 days			

Results

- 76 patients underwent presurgical DTI/fMRI brain mapping prior to resection for 69 primary and 7 metastatic lesions. 61% were primary operations.
- Over 80% were for high-grade (WHO-III, -IV, or metastatic) lesions. Of patients with preoperative neurological deficits (N=67), 53% demonstrated improvement post-operatively while 5% demonstrated worsened symptoms.
- Four patients (5%) experienced major morbidities: 2 cases of meningitis, a stroke, and one episode of severe hemiparesis.
- One perioperative mortality at 22 days; six-month mortality was 14%, all in patients with highgrade lesions. Mean postoperative length of stay was 4 ± 2 days and 76% of patients were discharged home.

Conclusions

• Our study reiterates the benefit of DTI and fMRI in pre-surgical planning for resection of supratentorial tumors and highlights the need for further prospective validation of this promising technology.

References

[1] Ohue S, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012 Feb;70(2):283 -93; discussion 294.

[2] Li F, et al. Neuroimaging and functional navigation as potential tools to reduce the incidence of surgical complications of lateral ventricular meningiomas. Clin Neurol Neurosurg. 2011 Sep;113(7):564-9. Epub 2011 May 6. [3] Bagadia A, et al. Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intraaxial brain lesions.J Clin Neurosci. 2011 May;18(5):633-[9] Epub 2011 Mar 2. [4] Berntsen EM, et al. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery. 2010 Aug;67(2):251-64.

[5] González-Darder JM, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010 Feb;28(2):E5.
[6] Sawaya, Raymond, et al. Neurosurgical Outcomes in a Modern Series of 400 Craniotomies for Treatment of Parenchymal Tumors. Neurosurgery.1998 May;42(5): 1044-1055.

COMPLICATION	MINOR	MAJOR		
Neurological				
Motor or sensory deficit	Resolved within 30 days	Neurological deterioration persisted more than 30 days or required surgery		
Aphasia/dysphasia	Resolved within 30 days	Persisted more than 30 days		
Visual field deficit	Resolved within 30 days	Persisted more than 30 days		

Tumor Population											
	n	%	LIVING	%	DECEASED	%	LFU*	%	HISTOLOGY (n)		
Low Grade	15										
Grade I	3	3.9%	2	66.7%	0	0.0%	1	33.3%	Meningioma (3)		
М	1	33.3%	1	50.0%	0	0.0%	0	0.0%			
F	2	66.7%	1	50.0%	0	0.0%	1	100.0%			
Grade II	12	15.8%	9	75.0%	2	16.7%	1	8.3%	Astrocytoma (5), Mixed Astrocytoma/ Oligodendroglioma (4), Oligodendroglioma (3)		
м	8	66.7%	6	66.7%	1	50.0%	1	100.0%			
F	4	33.3%	3	33.3%	1	50.0%	0	0.0%			
High Grade	61										
Grade III	16	21.1%	11	68.8%	4	25.0%	1	6.3%	Anaplastic Astrocytoma (8), Anaplastic Oligodendroglioma (3), Anaplastic Oligoastrocytoma (2), Anaplastic Mixed Glioma (2)		
м	13	81.3%	10	90.9%	3	75.0%	0	0.0%			
F	3	18.8%	1	9.1%	1	25.0%	1	100.0%			
Grade IV	38	50.0%	7	18.4%	23	60.5%	8	22.2%	Glioblastoma multiforme (35), Malignant neuroglial tumor (1), metastatic neuroendocrine tumor vs GBM (1), fibrillary astrocytoma/GBM (1)		
М	21	55.3%	3	42.9%	12	52.2%	6	75.0%			
F	17	44.7%	4	57.1%	11	47.8%	2	25.0%			
Metastatic	7	9.2%	2	28.6%	3	42.9%	2	28.6%	Non-Small Cell Lung Cancer (4), Small Cell Lung Cancer (1), Squamous cell carcinoma (1), Poorly differentiated metastatic carcinoma (1)		
М	1	14.3%	0	0.0%	0	0.0%	1	50.0%			
F	6	85.7%	2	100.0%	3	100.0%	1	50.0%			
TOTAL	76		31	40.8%	32	42.1%	13	17.1%			
М	44	57.9%	20	64.5%	16	50.0%	8	61.5%			
F	32	42.1%	11	35.5%	16	50.0%	5	38.5%			

